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Basic properties of the integers

This chapter discusses some of the basic properties of the integers, including
the notions of divisibility and primality, unique factorization into primes,
greatest common divisors, and least common multiples.

1.1 Divisibility and primality

Consider the integers Z := {. . . ,−2,−1, 0, 1, 2, . . .}. For a, b ∈ Z, we say
that b divides a, or alternatively, that a is divisible by b, if there exists
c ∈ Z such that a = bc. If b divides a, then b is called a divisor of a, and
we write b | a. If b does not divide a, then we write b - a.

We first state some simple facts:

Theorem 1.1. For all a, b, c ∈ Z, we have

(i) a | a, 1 | a, and a | 0;
(ii) 0 | a if and only if a = 0;

(iii) a | b and a | c implies a | (b+ c);

(iv) a | b implies a | −b;
(v) a | b and b | c implies a | c.

Proof. These properties can be easily derived from the definition using ele-
mentary facts about the integers. For example, a | a because we can write
a = a · 1; 1 | a because we can write a = 1 · a; a | 0 because we can write
0 = a·0. We leave it as an easy exercise for the reader to verify the remaining
properties. 2

Another simple but useful fact is the following:

Theorem 1.2. For all a, b ∈ Z, we have a | b and b | a if and only if a = ±b.
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Proof. Clearly, if a = ±b, then a | b and b | a. So let us assume that a | b and
b | a, and prove that a = ±b. If either of a or b are zero, then part (ii) of the
previous theorem implies that the other is zero. So assume that neither is
zero. Now, b | a implies a = bc for some c ∈ Z. Likewise, a | b implies b = ad

for some d ∈ Z. From this, we obtain b = ad = bcd, and canceling b from
both sides of the equation b = bcd, we obtain 1 = cd. The only possibility
is that either c = d = −1, in which case a = −b, or c = d = 1, in which case
a = b. 2

Any integer n is trivially divisible by ±1 and ±n. We say that an integer
p is prime if p > 1 and the only divisors of p are the trivial divisors ±1
and ±p. Conversely, an integer n is called composite if n > 1 and it is
not prime. So an integer n > 1 is composite if and only if n = ab for some
integers a, b with 1 < a < n and 1 < b < n. The first few primes are

2, 3, 5, 7, 11, 13, 17, . . . .

The number 1 is not considered to be either prime or composite. Also, we
do not consider the negative of a prime (e.g., −2) to be prime (although one
can, and some authors do so).

A basic fact is that any non-zero integer can be expressed as a signed
product of primes in an essentially unique way. More precisely:

Theorem 1.3 (Fundamental theorem of arithmetic). Every non-zero
integer n can be expressed as

n = ±pe1
1 · · · p

er
r ,

where the pi are distinct primes and the ei are positive integers. Moreover,
this expression is unique, up to a reordering of the primes.

Note that if n = ±1 in the above theorem, then r = 0, and the product
of zero terms is interpreted (as usual) as 1.

To prove this theorem, we may clearly assume that n is positive, since
otherwise, we may multiply n by −1 and reduce to the case where n is
positive.

The proof of the existence part of Theorem 1.3 is easy. This amounts
to showing that every positive integer n can be expressed as a product
(possibly empty) of primes. We may prove this by induction on n. If n = 1,
the statement is true, as n is the product of zero primes. Now let n > 1,
and assume that every positive integer smaller than n can be expressed as
a product of primes. If n is a prime, then the statement is true, as n is the
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product of one prime; otherwise, n is composite, and so there exist a, b ∈ Z
with 1 < a < n, 1 < b < n, and n = ab; by the induction hypothesis, both a
and b can be expressed as a product of primes, and so the same holds for n.

The uniqueness part of Theorem 1.3 is by no means obvious, and most
of the rest of this section and the next section are devoted to developing a
proof of this. We give a quite leisurely proof, introducing a number of other
very important tools and concepts along the way that will be useful later.
An essential ingredient in this proof is the following:

Theorem 1.4 (Division with remainder property). For a, b ∈ Z with
b > 0, there exist unique q, r ∈ Z such that a = bq + r and 0 ≤ r < b.

Proof. Consider the set S of non-negative integers of the form a − zb with
z ∈ Z. This set is clearly non-empty, and so contains a minimum. Let r be
the smallest integer in this set, with r = a − qb for q ∈ Z. By definition,
we have r ≥ 0. Also, we must have r < b, since otherwise, we would have
0 ≤ r − b < r and r − b = a− (q + 1)b ∈ S, contradicting the minimality of
r.

That proves the existence of r and q. For uniqueness, suppose that a =
bq + r and a = bq′ + r′, where 0 ≤ r < b and 0 ≤ r′ < b. Then subtracting
these two equations and rearranging terms, we obtain

r′ − r = b(q − q′). (1.1)

Now observe that by assumption, the left-hand side of (1.1) is less than b in
absolute value. However, if q 6= q′, then the right-hand side of (1.1) would
be at least b in absolute value; therefore, we must have q = q′. But then by
(1.1), we must have r = r′. 2

In the above theorem, it is easy to see that q = ba/bc, where for any real
number x, bxc denotes the greatest integer less than or equal to x. We shall
write r = a mod b; that is, a mod b denotes the remainder in dividing a by
b. It is clear that b | a if and only if a mod b = 0.

One can generalize the notation a mod b to all integers a and b, with b 6= 0:
we define a mod b := a− bq, where q = ba/bc.

In addition to the “floor” function b·c, the “ceiling” function d·e is also
useful: for any real number x, dxe is defined as the smallest integer greater
than or equal to x.

Exercise 1.1. Let n be a composite integer. Show that there exists a prime
p dividing n, such that p ≤ |n|1/2.
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Exercise 1.2. For integer n and real x, show that n ≤ x if and only if
n ≤ bxc.

Exercise 1.3. For real x and positive integer n, show that bbxc/nc = bx/nc.
In particular, for positive integers a, b, c, bba/bc/cc = ba/(bc)c.

Exercise 1.4. For real x, show that 2bxc ≤ b2xc ≤ 2bxc+ 1.

Exercise 1.5. For positive integers m and n, show that the number of
multiples of m among 1, 2, . . . , n is bn/mc. More generally, for integer m ≥ 1
and real x ≥ 0, show that the number of multiples of m in the interval [1, x]
is bx/mc.

Exercise 1.6. For integers a, b with b < 0, show that b < a mod b ≤ 0.

1.2 Ideals and greatest common divisors

To carry on with the proof of Theorem 1.3, we introduce the notion of an
ideal of Z, which is a non-empty set of integers that is closed under addition,
and under multiplication by an arbitrary integer. That is, a non-empty set
I ⊆ Z is an ideal if and only if for all a, b ∈ I and all z ∈ Z, we have

a+ b ∈ I and az ∈ I.

Note that for an ideal I, if a ∈ I, then so is −a, since −a = a · (−1) ∈ I.
It is easy to see that any ideal must contain 0: since an ideal I must contain
some element a, and by the closure properties of ideals, we must have 0 =
a+ (−a) ∈ I. It is clear that {0} and Z are ideals. Moreover, an ideal I is
equal to Z if and only if 1 ∈ I—to see this, note that 1 ∈ I implies that
for all z ∈ Z, z = 1 · z ∈ I, and hence I = Z; conversely, if I = Z, then in
particular, 1 ∈ I.

For a ∈ Z, define aZ := {az : z ∈ Z}; that is, aZ is the set of all integer
multiples of a. It is easy to see that aZ is an ideal: for az, az′ ∈ aZ and
z′′ ∈ Z, we have az + az′ = a(z + z′) ∈ aZ and (az)z′′ = a(zz′′) ∈ aZ. The
set aZ is called the ideal generated by a, and any ideal of the form aZ
for some a ∈ Z is called a principal ideal.

We observe that for all a, b ∈ Z, we have a ∈ bZ if and only if b | a.
We also observe that for any ideal I, we have a ∈ I if and only if aZ ⊆ I.
Both of these observations are simple consequences of the definitions, as the
reader may verify. Combining these two observations, we see that aZ ⊆ bZ
if and only if b | a.

We can generalize the above method of constructing ideals. For
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a1, . . . , ak ∈ Z, define

a1Z + · · ·+ akZ := {a1z1 + · · ·+ akzk : z1, . . . , zk ∈ Z}.

That is, a1Z + · · · + akZ consists of all linear combinations, with integer
coefficients, of a1, . . . , ak. We leave it to the reader to verify that a1Z+ · · ·+
akZ is an ideal and contains a1, . . . , ak; it is called the ideal generated by
a1, . . . , ak. In fact, this ideal is the “smallest” ideal containing a1, . . . , ak, in
the sense that any other ideal that contains a1, . . . , ak must already contain
this ideal (verify).

Example 1.1. Let a := 3 and consider the ideal aZ. This consists of all
integer multiples of 3; that is, aZ = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}. 2

Example 1.2. Let a1 := 3 and a2 := 5, and consider the ideal a1Z + a2Z.
This ideal contains 2a1−a2 = 1. Since it contains 1, it contains all integers;
that is, a1Z + a2Z = Z. 2

Example 1.3. Let a1 := 4 and a2 := 6, and consider the ideal a1Z + a2Z.
This ideal contains a2 − a1 = 2, and therefore, it contains all even integers.
It does not contain any odd integers, since the sum of two even integers is
again even. 2

The following theorem says that all ideals of Z are principal.

Theorem 1.5. For any ideal I ⊆ Z, there exists a unique non-negative
integer d such that I = dZ.

Proof. We first prove the existence part of the theorem. If I = {0}, then
d = 0 does the job, so let us assume that I 6= {0}. Since I contains non-zero
integers, it must contain positive integers, since if z ∈ I then so is −z. Let
d be the smallest positive integer in I. We want to show that I = dZ.

We first show that I ⊆ dZ. To this end, let c be any element in I. It
suffices to show that d | c. Using the division with remainder property, write
c = qd + r, where 0 ≤ r < d. Then by the closure properties of ideals, one
sees that r = c − qd is also an element of I, and by the minimality of the
choice of d, we must have r = 0. Thus, d | c.

We next show that dZ ⊆ I. This follows immediately from the fact that
d ∈ I and the closure properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note
that if dZ = d′Z, we have d | d′ and d′ | d, from which it follows by
Theorem 1.2 that d′ = ±d. 2

For a, b ∈ Z, we call d ∈ Z a common divisor of a and b if d | a and
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d | b; moreover, we call such a d a greatest common divisor of a and b if
d is non-negative and all other common divisors of a and b divide d.

Theorem 1.6. For any a, b ∈ Z, there exists a unique greatest common
divisor d of a and b, and moreover, aZ + bZ = dZ.

Proof. We apply the previous theorem to the ideal I := aZ + bZ. Let d ∈ Z
with I = dZ, as in that theorem. We wish to show that d is a greatest
common divisor of a and b. Note that a, b, d ∈ I and d is non-negative.

Since a ∈ I = dZ, we see that d | a; similarly, d | b. So we see that d is a
common divisor of a and b.

Since d ∈ I = aZ + bZ, there exist s, t ∈ Z such that as + bt = d. Now
suppose a = a′d′ and b = b′d′ for a′, b′, d′ ∈ Z. Then the equation as+bt = d

implies that d′(a′s + b′t) = d, which says that d′ | d. Thus, any common
divisor d′ of a and b divides d.

That proves that d is a greatest common divisor of a and b. As for
uniqueness, note that if d′′ is a greatest common divisor of a and b, then
d | d′′ and d′′ | d, and hence d′′ = ±d, and the requirement that d′′ is
non-negative implies that d′′ = d. 2

For a, b ∈ Z, we denote by gcd(a, b) the greatest common divisor of a and
b. Note that as we have defined it, gcd(a, 0) = |a|. Also note that when at
least one of a or b are non-zero, gcd(a, b) is the largest positive integer that
divides both a and b.

An immediate consequence of Theorem 1.6 is that for all a, b ∈ Z, there
exist s, t ∈ Z such that as + bt = gcd(a, b), and that when at least one of
a or b are non-zero, gcd(a, b) is the smallest positive integer that can be
expressed as as+ bt for some s, t ∈ Z.

We say that a, b ∈ Z are relatively prime if gcd(a, b) = 1, which is
the same as saying that the only common divisors of a and b are ±1. It is
immediate from Theorem 1.6 that a and b are relatively prime if and only
if aZ + bZ = Z, which holds if and only if there exist s, t ∈ Z such that
as+ bt = 1.

Theorem 1.7. For a, b, c ∈ Z such that c | ab and gcd(a, c) = 1, we have
c | b.

Proof. Suppose that c | ab and gcd(a, c) = 1. Then since gcd(a, c) = 1, by
Theorem 1.6 we have as+ct = 1 for some s, t ∈ Z. Multiplying this equation
by b, we obtain

abs+ cbt = b. (1.2)
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Since c divides ab by hypothesis, and since c clearly divides cbt, it follows
that c divides the left-hand side of (1.2), and hence that c divides b. 2

As a consequence of this theorem, we have:

Theorem 1.8. Let p be prime, and let a, b ∈ Z. Then p | ab implies that
p | a or p | b.

Proof. Assume that p | ab. The only divisors of p are ±1 and ±p. Thus,
gcd(p, a) is either 1 or p. If p | a, we are done; otherwise, if p - a, we must
have gcd(p, a) = 1, and by the previous theorem, we conclude that p | b. 2

An obvious corollary to Theorem 1.8 is that if a1, . . . , ak are integers,
and if p is a prime that divides the product a1 · · · ak, then p | ai for some
i = 1, . . . , k. This is easily proved by induction on k. For k = 1, the
statement is trivially true. Now let k > 1, and assume that statement holds
for k − 1. Then by Theorem 1.8, either p | a1 or p | a2 · · · ak−1; if p | a1, we
are done; otherwise, by induction, p divides one of a2, . . . , ak−1.

We are now in a position to prove the uniqueness part of Theorem 1.3,
which we can state as follows: if p1, . . . , pr and p′1, . . . , p

′
s are primes (with

duplicates allowed among the pi and among the p′j) such that

p1 · · · pr = p′1 · · · p′s, (1.3)

then (p1, . . . , pr) is just a reordering of (p′1, . . . , p
′
s). We may prove this by

induction on r. If r = 0, we must have s = 0 and we are done. Now suppose
r > 0, and that the statement holds for r − 1. Since r > 0, we clearly must
have s > 0. Also, as p1 is obviously divides the left-hand side of (1.3), it
must also divide the right-hand side of (1.3); that is, p1 | p′1 · · · p′s. It follows
from (the corollary to) Theorem 1.8 that p1 | p′j for some j = 1, . . . , s, and
indeed, since pi and p′j are both prime, we must have pi = p′j . Thus, we may
cancel pi from the left-hand side of (1.3) and p′j from the right-hand side of
(1.3), and the statement now follows from the induction hypothesis. That
proves the uniqueness part of Theorem 1.3.

Exercise 1.7. Let I be a non-empty set of integers that is closed under
addition, that is, a+ b ∈ I for all a, b ∈ I. Show that the condition

−a ∈ I for all a ∈ I

holds if and only if

az ∈ I for all a ∈ I, z ∈ Z.
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Exercise 1.8. Let a, b, c be positive integers, with gcd(a, b) = 1 and c ≥ ab.
Show that there exist non-negative integers s, t such that c = as+ bt.

Exercise 1.9. Show that for any integers a, b with d := gcd(a, b) 6= 0, we
have gcd(a/d, b/d) = 1.

1.3 Some consequences of unique factorization

The following theorem is a consequence of just the existence part of Theo-
rem 1.3:

Theorem 1.9. There are infinitely many primes.

Proof. By way of contradiction, suppose that there were only finitely many
primes; call them p1, . . . , pk. Then set n := 1 +

∏k
i=1 pi, and consider a

prime p that divides n. There must be at least one such prime p, since
n ≥ 2, and every positive integer can be written as a product of primes.
Clearly, p cannot equal any of the pi, since if it did, then p would divide
n −

∏k
i=1 pi = 1, which is impossible. Therefore, the prime p is not among

p1, . . . , pk, which contradicts our assumption that these are the only primes.
2

For a prime p, we may define the function νp, mapping non-zero integers
to non-negative integers, as follows: for integer n 6= 0, if n = pem, where
p - m, then νp(n) := e. We may then write the factorization of n into primes
as

n = ±
∏
p

pνp(n),

where the product is over all primes p, with all but finitely many of the
terms in the product equal to 1.

It is also convenient to extend the domain of definition of νp to include
0, defining νp(0) :=∞. Following standard conventions for arithmetic with
infinity (see Preliminaries), it is easy to see that for all a, b ∈ Z, we have

νp(a · b) = νp(a) + νp(b) for all p. (1.4)

From this, it follows that for all a, b ∈ Z, we have

b | a if and only if νp(b) ≤ νp(a) for all p, (1.5)

and

νp(gcd(a, b)) = min(νp(a), νp(b)) for all p. (1.6)

For a, b ∈ Z a common multiple of a and b is an integer m such that
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a | m and b | m; moreover, such an m is the least common multiple of a
and b if m is non-negative and m divides all common multiples of a and b.
In light of Theorem 1.3, it is clear that the least common multiple exists and
is unique, and we denote the least common multiple of a and b by lcm(a, b).
Note that as we have defined it, lcm(a, 0) = 0, and that when both a and
b are non-zero, lcm(a, b) is the smallest positive integer divisible by both a

and b. Also, for all a, b ∈ Z, we have

νp(lcm(a, b)) = max(νp(a), νp(b)) for all p, (1.7)

and

gcd(a, b) · lcm(a, b) = |ab|. (1.8)

It is easy to generalize the notions of greatest common divisor and least
common multiple from two integers to many integers. For a1, . . . , ak ∈ Z,
with k ≥ 1, we call d ∈ Z a common divisor of a1, . . . , ak if d | ai for
i = 1, . . . , k; moreover, we call such a d the greatest common divisor of
a1, . . . , ak if d is non-negative and all other common divisors of a1, . . . , ak

divide d. It is clear that the greatest common divisor of a1, . . . , ak exists
and is unique, and moreover, we have

νp(gcd(a1, . . . , ak)) = min(νp(a1), . . . , νp(ak)) for all p. (1.9)

Analogously, for a1, . . . , ak ∈ Z, with k ≥ 1, we call m ∈ Z a common
multiple of a1, . . . , ak if ai | m for i = 1, . . . , k; moreover, such an m is called
the least common multiple of a1, . . . , ak if m divides all common multiples
of a1, . . . , ak. It is clear that the least common multiple of a1, . . . , ak exists
and is unique, and moreover, we have

νp(lcm(a1, . . . , ak)) = max(νp(a1), . . . , νp(ak)) for all p. (1.10)

We say that integers a1, . . . , ak are pairwise relatively prime if
gcd(ai, aj) = 1 for all i, j with i 6= j. Note that if a1, . . . , ak are pairwise rel-
atively prime, then gcd(a1, . . . , ak) = 1; however, gcd(a1, . . . , ak) = 1 does
not imply that a1, . . . , ak are pairwise relatively prime.

Consider now the rational numbers Q := {a/b : a, b ∈ Z, b 6= 0}. Because
of the unique factorization property for Z, given any rational number a/b,
if we set d := gcd(a, b), and define the integers a′ := a/d and b′ := b/d, then
we have a/b = a′/b′ and gcd(a′, b′) = 1. Moreover, if ã/b̃ = a′/b′, then we
have ãb′ = a′b̃, and so b′ | a′b̃, and since gcd(a′, b′) = 1, we see that b′ | b̃;
if b̃ = d̃b′, it follows that ã = d̃a′. Thus, we can represent every rational
number as a fraction in lowest terms, that is, a fraction of the form a′/b′



10 Basic properties of the integers

where a′ and b′ are relatively prime; moreover, the values of a′ and b′ are
uniquely determined up to sign, and every other fraction that represents the
same rational number is of the form (d̃a′)/(d̃b′), for some non-zero integer d̃.

Exercise 1.10. Let n be a positive integer. Show that if a, b are relatively
prime integers, each of which divides n, then ab divides n. More generally,
show that if a1, . . . , ak are pairwise relatively prime integers, each of which
divides n, then their product a1 · · · ak divides n.

Exercise 1.11. For positive integer n, let D(n) denote the set of positive
divisors of n. For relatively prime, positive integers n1, n2, show that the
sets D(n1)×D(n2) and D(n1 ·n2) are in one-to-one correspondence, via the
map that sends (d1, d2) ∈ D(n1)×D(n2) to d1 · d2.

Exercise 1.12. Let p be a prime and k an integer 0 < k < p. Show that
the binomial coefficient (

p

k

)
=

p!
k!(p− k)!

,

which is an integer, of course, is divisible by p.

Exercise 1.13. An integer a ∈ Z is called square-free if it is not divisible
by the square of any integer greater than 1. Show that any integer n ∈ Z
can be expressed as n = ab2, where a, b ∈ Z and a is square-free.

Exercise 1.14. Show that any non-zero x ∈ Q can be expressed as

x = ±pe1
1 · · · p

er
r ,

where the pi are distinct primes and the ei are non-zero integers, and that
this expression in unique up to a reordering of the primes.

Exercise 1.15. Show that if an integer cannot be expressed as a square of
an integer, then it cannot be expressed as a square of any rational number.

Exercise 1.16. Show that for all integers a, b, and all primes p, we have
νp(a + b) ≥ min{νp(a), νp(b)}, and that if νp(a) < νp(b), then νp(a + b) =
νp(a).

Exercise 1.17. For a prime p, we may extend the domain of definition of νp

from Z to Q: for non-zero integers a, b, let us define νp(a/b) := νp(a)−νp(b).

(a) Show that this definition of νp(a/b) is unambiguous, in the sense that
it does not depend on the particular choice of a and b.

(b) Show that for all x, y ∈ Q, we have νp(xy) = νp(x) + νp(y).
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(c) Show that for all x, y ∈ Q, we have νp(x + y) ≥ min{νp(x), νp(y)},
and that if νp(x) < νp(y), then νp(x+ y) = νp(x).

(d) Show that for all non-zero x ∈ Q, we have

x = ±
∏
p

pνp(x),

where the product is over all primes, and all but a finite number of
terms in the product is 1.

Exercise 1.18. Let n be a positive integer, and let Cn denote the number of
pairs of integers (a, b) such that 1 ≤ a ≤ n, 1 ≤ b ≤ n and gcd(a, b) = 1, and
let Fn be the number of distinct rational numbers a/b, where 0 ≤ a < b ≤ n.

(a) Show that Fn = (Cn + 1)/2.

(b) Show that Cn ≥ n2/4. Hint: first show that Cn ≥ n2(1−
∑

d≥2 1/d2),
and then show that

∑
d≥2 1/d2 ≤ 3/4.

Exercise 1.19. This exercise develops a characterization of least common
multiples in terms of ideals.

(a) Arguing directly from the definition of an ideal, show that if I and J
are ideals of Z, then so is I ∩ J .

(b) Let a, b ∈ Z, and consider the ideals I := aZ and J := bZ. By part
(a), we know that I ∩ J is an ideal. By Theorem 1.5, we know that
I ∩ J = mZ for some uniquely determined non-negative integer m.
Show that m = lcm(a, b).

Exercise 1.20. For a1, . . . , ak ∈ Z, with k > 1, show that

gcd(a1, . . . , ak) = gcd(gcd(a1, . . . , ak−1), ak)

and

lcm(a1, . . . , ak) = lcm(lcm(a1, . . . , ak−1), ak).

Exercise 1.21. Show that for any a1, . . . , ak ∈ Z, if d := gcd(a1, . . . , ak),
then dZ = a1Z + · · ·+ akZ; in particular, there exist integers s1, . . . , sk such
that

d = a1s1 + · · ·+ aksk.

Exercise 1.22. Show that for all integers a, b, we have

gcd(a+ b, lcm(a, b)) = gcd(a, b).
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Exercise 1.23. Show that for integers c, a1, . . . , ak, we have

gcd(ca1, . . . , cak) = |c| gcd(a1, . . . , ak).


